Solutions for Homework 2

1. The isotropic point kernel and the anisotropic point kernels are used to do problems

a and b, respectively.

la) The differential length for the ring source is d¢ = ro d®.

1b) An extra factor of u is present in the kernel because of the p-dependence of the

source.
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2. The isotropic point kernel and the anisotropic point kernels are used to do problems

a and b, respectively.

2a) The differential surface for the disk source is dA = r dr d®.
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2b) An extra factor of p is present in the kernel because of the u-dependence of the

source.
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3a) The limit as 1y — oo of 2¢n {1 + :—(25} is oo.
0

3b) The limit as 7y — oo of L {1 - \/rZSOng} is .

4a) First we use delta-function sources with vacuum boundary conditions.

a) The equation to be solved is

fw qo
— = —(x fi
on the interval, [0,00), with ¥(0) = 0. Dividing the above equation by u and

integrating it over (0 — €,0 + €), where € is arbitrarily small, one finds that the

solution must jump at # = 0 by ;22-. Thus the angular flux solution is

w<x>=%.

It is clear that scalar flux associated with this angular flux solution is infinite.
b) The equation to be solved is

f 0
8x 4 orp =0,
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on the interval, [0, 00), with ¥(0) = 0. Dividing the above equation by p and

integrating it over (0 — €,0 + €), where € is arbitrarily small, one finds that the

solution must jump at x = 0 by 2. Thus the angular flux solution is
_ @

and the scalar flux solution is

—27r/ —du——

4b) Next we use incident fluxes with zero sources.

a) The equation to be solved is

ua—w:(), for pu > 0,
Ox

on the interval, [0,00). This equation obviously has a constant solution. Re-
membering that, in general, one divides a surface source by 5 .1 to obtain

the corresponding incident flux, we divide {2 by u to obtain the incident flux,

which is also the solution:

w<x>=%.

As previously noted, the corresponding scalar flux is infinite.

a) The equation to be solved is

W

8m =0, forpu>0,



on the interval, [0,00). We divide 2£ by 1 to obtain the incident flux, which is

also the solution:
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As previously noted, the corresponding scalar flux solution is

5) Starting with the integral equation for the angular flux,

v(r, Q)= zﬁ(? — sbﬁ,ﬁ) exp [— /Sb oy(s)) ds/:| I
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we derived various kernels for the scalar flux in class. This was basically done by

integrating Eq. (1) over all directions and manipulating the integrand. The final

result was
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with 7 o denoting the integration variable associated with the kernel, e.g., 7 o= 7
—_— —/! —_— —
in the area kernel and 7 ¢ = 7 in the volumetric kernel. Since we want .J - n g,
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where n g is an arbitrary normal, we need simply multiply Eq. (1) by - o before
we perfom the angular integration:
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Carrying out the very same manipulations on Eq. (4) as were originally carried out
on Eq. (1), we get

— —

exp [—7‘( o, )} dA" +

— — — SN —_— N
- — —_— w<T7QO>|QO'n|(QO‘nO>
J(r)-mnog = 7{
T

—s/ —
[ r = r?
—/ — —_— —
/Q(T ,QO)(QO' no)
D

—s! —
[ =

"

exp [—7‘( T, )] av’. (5)

6a) For this problem, 50 cny = i, so there is just another factor of u in the

integrand:
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Note that the current for an isotropic source is the same as the scalar flux for a

cosine-law source (see Problem 1b).

6b) For this problem, 50 o i, so there is just another factor of u in the

integrand:
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7a) For this problem, 50 cny = i, so there is just another factor of u in the

integrand:
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Note that the current for an isotropic source is the same as the scalar flux for a

cosine-law source (see Problem 2b).

7b) For this problem, 50 T [, so there is just another factor of y in the

integrand:
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8a) The limit as ry — 00 0
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